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An integrative methodology to
efficiently design the optimal structure

of column-type machine tools
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Abstract. For tool machinery, the rigidity of structures plays the most important role

for their �nal machining precision. In the marketplace, there exist lots of structure types which

change very quickly to meet the ever-increasing needs of customers. Facing the challenge, all

machine makers should have a good methodology to optimally design and verify their machine

products. However, designing a good machine structure has never been a simple and unilateral

thing. Therefore, this study, selecting a double-column machining center as the target because

of its highly unstable structure, uses a hybrid design procedure which combines the experience

as initial design bases and together with an integrative numerical examination of both static and

dynamic rigidity to theoretically obtain a high-rigid structure with low cost. With this proposed

methodology, machine designers may e�ciently and quickly determine the optimal structure of a

column-type machine tool.

Key words. Finite element method, structure design, machine tools design, high-rigidity

design.

1. Introduction

Nowadays, machine makers want to shorten the developing time to cope with
the constant change of customers' needs. But, in the viewpoints of a machine pro-
ducer, building a reliable machine in the way of time-saving and cost-saving seems
a con�ict event to each other. To solve this con�ict, some following basic concepts
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should be aware �rst. To design a good structure of tool machinery, there are lots of
factors which in�uence their precision behavior during machining. Among these fac-
tors, the original type of structure is especially crucial. Examining the development
procedures of tool machinery, it is found that most of the machine structures were de-
signed by experiences. In the early age, it was O.K. for using the experience-based
potential rules to design simple machine structure with low precision. However,
in the age of high-competition environment and high-precision requirement today,
this experience-based design can no longer provide enough knowledge for developing
a good-quality machine which frequently requires features like low-weight, multi-
function, high rigidity and at the same time possesses complex structure. Therefore,
for saving development time and money, as well as introducing more solid mechanics
knowledge to cope with the ever-growing di�culties for designing a good machine,
a rapid and e�cient way in conjunction with the accumulated know-how or past
knowledge are needed.

So far, there is a popular e�cient way to develop or analyze the machine structure,
called �Finite Element Method (FEM),� which is a numerical method. Using FEM
as a developing tool started in 1990s. In the past, lots of researches were successfully
made in many di�erent areas [1-5]. Meanwhile, many studies were made about the
subject of analyzing the sti�ness of machine tools using experimental, analytical or
numerical methods [6-10]. However, reports which include detailed technical know-
how in analyzing the rigidity of machine tools by the numerical method of FEM were
never seen. Therefore, this report attempts to use the integrative knowledge-based
FEM technique to better design the structure of a machine tool.

For designing the strong structure of a machine tool, the most important factors
are the static and dynamic rigidity, and the modal shapes of natural vibration. The
static rigidity concerns the magnitude of deformation when applying a static loading
on the machine. The dynamic rigidity concerns the magnitude of deformation under
the periodic external stimuli. And the natural frequencies and their corresponding
modal shapes give the knowledge about avoiding machine resonance. In the machine
structure design, these three parameters interact with each other. Sometimes a
structure with good static rigidity would still easily appear damage due to resonance
or failure during normal cutting operations. Thus, an integrative examination of
these parameters should be made to provide an overall well design guide of the
machine structure.

As such, this report aims to use the integrative know-how based FEM technique
to design an optimal machine structure by investigating the static rigidity, dynamic
rigidity and natural frequencies as well as their corresponding modal shape, which
may provide an overall detailed knowledge of machine structure.

2. Manupulation Procedure

The manipulation procedure of our proposed integrative know-how-based FEM
technique includes eight steps, as shown in Fig. 1. First, the target of a column-
type machine tool is chosen. All possible related restricted conditions are indicated,
which includes various boundary conditions, material, physical properties of machine
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structure, and so on. Second, introducing the past know-how about the structure
of the similar kind as the basic structure reference (this structure must be tested,
con�rmed its excellent quality by the market or users). Third, building a structure
prototype based on the referenced structure. Fourth, performing the mathematic
modelling in �nite element form. Fifth, constructing the mesh of the prototype.
Sixth, performing the FEM calculation using SOLIDWORKS program. Seventh,
analyzing and evaluating the static rigidity, dynamic rigidity, and vibration mode of
every case. Eighth, giving a suggestion to �nd out an optimal structure.

Fig. 1. Manipulation procedure
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3. Theories

3.1. Static Rigidity and FEM

For tool machinery, the governing equation of the structure displacement can be
expressed as

τ = τ0 (1/2− ξ) , (1)

or
E = E0 (1− γτ) , (2)

where kgf is the system sti�ness matrix, kgf ; kgf is the displacement vector;
kgf is the element number; kgf is the element sti�ness matrix; kgf is the total
external force vector; kgf is the reaction load vector. In Eqn. (2), if su�cient
boundary conditions are provided, then the displacement at every node ( kgf ) may
be obtained. If so, Eqn. (2) may be rewritten as

E = E0 (1− α (1/2− ξ)) , (3)

Where, the subscript �i� means the degree of freedom without displacement re-
striction. The kgf is known but not necessarily equals to kgf . Since the reaction
force must be zero when there is no displacement restriction, Eqn. (3) may be
written as

h(ξ) = h0 [1− (1− β1) (ξ + 1/2)] · [1− (1− β2) (η + 1/2)] , (4)

Solving the upper part of Eqn. (4), we may obtain

ρ = ρ0

[
1− (1− β) (ξ + 1/2)

2
]
, (5)

The reaction forces kgf may be obtained via the upper equation. Solving the
lower part of Eqn. (4), we may get

T =
ab

2
ω2

∫
A

h(ξ)ρw2 dA (6)

The strain energy kgf is further obtained as

V =
ab

2

∫
A

D(ξ)[G− 2(1− ν)H] dA , (7)

The relationship between nodal displacement vector kgf and displacement �eld
is described as

D(ξ) = D0 [[1− (1− β1) (ξ + 1/2)] · [1− (1− β2) (η + 1/2)]]
3
, (8)

where kgf is the shape function matrix. The strain- displacement relationship is
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D0 =
Eh30

12 (1− ν2)
(9)

where kgf means the linear di�erential operator. For a linear structure, the stress
vs. strain relationship is

D(ξ) =
E0h

3
0

12 (1− ν2)
(p1p2)

3p3 . (10)

where kgf is the elasticity coe�cient matrix.

3.2. Modal analysis and FEM

Modal analysis of a machine structure usually presents its results in the form
of natural frequencies and mode shapes. Three basic assumptions must be made
in the modal analysis: (1) The structure is linear, (2) No any damping e�ect, (3)
All physical properties under consideration is independent of time, such as force,
displacement, or temperature. In other words, the structure is under free vibra-
tion. Based on these assumptions, the governing equation of a structure under free
vibration may be expressed as

T =
ab

2
ρ0h0ω

2

∫
A

p1p2

[
1− (1− β)

(
ξ +

1

2

)2
]
w2 dA , (11)

For a linear structure system, the motion of free vibration is harmonic, i.e.,

V =
ab

2

E0h
3
0

12 (1− ν2)

∫
A

(p1p2)
3p3(G− 2(1− ν)H) dA (12)

here kgf means the amplitude or mode shape for the ith frequency kgf . Substi-
tuting Eqn. (12) into Eqn. (11), we have

δ (V − T ) = 0 . (13)

The above equation is an �eigenvalue problem� in which non-trivial solutions
occur under the following condition

w = A1q
2
1q2q3 +A2q

3
1q

2
2q

2
3 , (14)

From Eqn. (14), we may obtain n numbers of eigenvalues kgf , i=1,2,.., n and
their corresponding eigenvectors kgf , i=1,2,.., n. The variable n is the number of
degree of freedom of the structure system. For further application, the obtained
eigenvectors are usually normalized based on the mass matrix as

δ
(
V1 − λ2T1

)
= 0 , (15)
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3.3. Forced Vibration and FEM

The forced vibration response of machine structure follows the equations from
the linear dynamic structural analysis with considering external forces (may include
inertial force, damping force, and impact force) as:

η =
c

4b
− ξ

2
+

1

4
+
cξ

2b
, η = − c

4b
+
ξ

2
− 1

4
− cξ

2b
, ξ = −1

2
, ξ =

1

2
. (16)

where M is the material mass matrix, C is the damping matrix, K is the material
sti�ness matrix, τ is the acceleration vector, kgf is the velocity vector, and u is the
displacement vector, and f(t) is the time-dependent external load vector.

4. Results

Based on the good experience-based old column-type machine structure, we mod-
ify its related size and con�guration. The obtained reference-based new column-type
structure is shown in Fig. 2. The magnitude of external applying forces is setting
as 100 kgf in the x, y, and z directions. Applying the proper boundary and initial
conditions and choosing cast iron as material, we may perform the meshing work
(results shown in Fig. 2b) and FEM calculation. Throughthe element-independent
tests, the proper total nodal points of 421507 and total element numbers of 225137
are obtained. Further, three di�erent cases are under consideration: the spindle-
head positions are located at the top, middle (550 mm from the top) and bottom
(and 1100 mm from the top) of the vertical ram.

Fig. 2. Referencec-based structure and its meshing

4.1. Static rigidity

For case A, the calculated results of displacement distributions under the action
of external forces in x, y, and z directions are shown in Fig. 3. The obtained
maximum displacements are 0.0104 mm, 0.0133 mm, and 0.0075 mm in the x, y,
and z direction, respectively.
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Fig. 3. Displacement distributions under the action of forces in the x, y, and, z
directions for case A

4.2. Natural frequencies and mode shape

The calculated natural frequencies of case A (with in the rage of 0�500 Hz) are
shown in Table 1 and the corresponding �rst eight modal shapes are shown in Fig. 4.
The lowest natural frequency occurs at 21.2 Hz. Under the normal cutting conditions
which the rotational speeds of spindle are frequently set within the range of 0-5000
rpm, the �rst 10 natural frequencies and their corresponding modal shape should be
noticed. The structure resonance always happens around these critical frequencies.

Table 1. Natural frequencies of case A

β1

β = 0.4, β2 = 0.0 β = 0.4, β2 = 0.6

α = 0.0 α = 0.4 α = 0.0 α = 0.4

�rst
mode

second
mode

�rst
mode

second
mode

�rst
mode

second
mode

�rst
mode

second
mode

1.0 24.6196 166.561 23.0109 152.343 33.1729 189.644 30.9359 173.336

4.3. Dynamic rigidity

The harmonic wave analysis was made to calculate the responses under the stimuli
of periodic applying forces. The loading force with a magnitude of 100 kgf is set
acting on the lowest end of spindle nose, which has a frequency range of 0-440 Hz
(normal operation range). Table 2 and Fig. 5 show the dynamic rigidity distribution
results of the stimuli of periodic force acting in the x-direction. The dynamic weak
points are found occurring at 21.2 Hz, 21.4 Hz, 268.7 Hz, and 297.3 Hz with the
magnitudes of 0.291mm, 0.349 mm, and 0.095 mm, respectively. Larger vibration
would occur around the above frequencies, the user should be aware.

Table 2. Results of dynamic rigidity
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Fig. 4. Modal shape (�rst eight frequencies)

β1

β = 0.4, β2 = 0.0 β = 0.4, β2 = 0.6

α = 0.0 α = 0.4 α = 0.0 α = 0.4

�rst
mode

second
mode

�rst
mode

second
mode

�rst
mode

second
mode

�rst
mode

second
mode

0.0 20.5249 114.338 19.7942 107.769 27.5140 131.284 26.5642 124.196

0.2 20.8680 121.896 20.0278 114.019 27.9417 139.219 26.8341 130.581

0.4 21.4753 131.325 20.4902 121.995 28.7586 149.560 27.4395 139.181

0.6 22.3218 142.132 21.1574 131.242 29.9311 161.693 28.3482 149.431

0.8 23.3796 153.962 22.0055 141.436 31.4175 175.165 29.5258 160.917

1.0 24.6196 166.561 23.0109 152.343 33.1729 189.644 30.9359 173.336



AN INTEGRATIVE METHODOLOGY TO EFFICIENTLY DESIGN 61

Fig. 5. Dynamic rigidity distribution

4.4. Comparison and optimal structure

Changing the positions of spindle nose from the top (case A), the middle (case
B), to the bottom (case C) results in di�erent structure-rigidity behaviors. The
obtained correspondent maximum stresses appeared in the spindle nose are 713916
N/m2 , 705594 N/m2 , and 880096 N/m2 , respectively. It is apparently seen that
case C would induce a larger stress inside the machine structure. Consequently, it is
suggested that cases of spindle-nose positions located at the lowest, the most right,
and the most front positions should be considered. On the other hand, the obtained
maximum displacements of the spindle nose for case A, B, and C are 0.013 mm,
0.024 mm and 0.044 mm, respectively. Further, the static rigidity of the machine
structure for case A, B, and C can be calculated as 7.512 kgf/mm , 4.128 kgf/mm
, and 2.297 kgf/mm . Through the above �nding, it is suggested that an optimal
column-type machine structure should have strong inner structure (e.g. rib type,
thickness, support), avoid operating at the �rst ten critical frequencies, and notice
the user not operating the external stimuli at the speci�c frequencies where weak
points occur.

5. Conclusion

This study used the know-how based FEM technique to explore the structure of
a double-column machine tool. Three critical parameters of the machine structure:
static rigidity, dynamic rigidity and natural frequencies as well as its modal shapes
were investigated simultaneously to obtain an optimal structure in which it ensures
a high precision behavior during machining. Three cases with the spindle locating at
the top, middle, and bottom positions are examined. Results show that the know-
how based prototype can give an e�cient design guide to a new machine prototype.
(2) The FEM technique, in the least price, may be used to get a detailed insight
of machine structure and �nd out what on earth a good structure should be. (4)
Combining these two techniques result in a quick e�cient way to explore a good
machine structure with high rigidity.
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